
Lattice Semiconductor©

Introduction to Lattice Tool

Scripting

Lattice Semiconductor©

▪ Why create scripts?

▪ Implement new approaches to designing

▪ Improve productivity

▪ Not as difficult as some might think

▪ Reusability possible once you get going initially

▪ Work entirely from the command line

▪ What types of scripts are typically used within the Lattice tool flow?

▪ TCL (Tool Command Language)

▪ TCL scripts are used to automate the FPGA design flow for Lattice’s main design tools

▪ Diamond, Radiant, Propel Builder

▪ Most actions in each tool’s GUI have corresponding TCL commands which can be used in a scripted flow

▪ Makefile

▪ Makefile scripts are used to generate compiled code for embedded software projects (C/C++)

▪ Lattice Propel SDK automatically generates the necessary build scripts to compile a C/C++ project

▪ In the Lattice tool flow it is not required for users to create these own scripts

▪ If users desire to customize their build scripts, they should create a new file called makefile.targets

Introduction to Lattice Tool Scripting

Lattice Semiconductor©

Creating Lattice Tool

Scripts

Lattice Semiconductor©

Radiant Scriptable Features

▪ Synthesis, MAP, PAR

▪ Bitstream generation

▪ General project management (TCL)

▪ Message promotion & demotion (TCL)

▪ Reveal Analyzer & Controller (TCL)

▪ Power Calculator (TCL)

▪ ECO Editor (TCL)

▪ Device Programming

▪ Deployment Tool

▪ IP Generation

Radiant & Diamond Tool Scripting Overview

Diamond Scriptable Features

▪ Synthesis, MAP, PAR

▪ Bitstream generation

▪ General project management (TCL)

▪ Reveal Analyzer (TCL)

▪ Power Calculator (TCL)

▪ ECO Editor (TCL)

▪ Device Programming

▪ Deployment Tool

Lattice Semiconductor©

▪ The two main methods for scripting the Lattice FPGA build flow are TCL and batch

▪ Depending on the type of script (TCL or batch), there are different commands that are used

▪ How each script is invoked in the Lattice tool design flow also depends on the type of script

▪ This is the first thing that you should consider when creating your script

▪ For TCL based scripts, Radiant and Diamond both have an integrated TCL console

▪ TCL console is integrated at the GUI level, but there is also a console-only version as well

▪ It is also possible to automatically invoke TCL scripts upon launching Radiant or Diamond’s TCL

consoles

▪ For batch mode scripts, there is additional setup required before Lattice tool commands

can be used at the command line level

▪ Depending on the operating system this setup varies slightly

Creating Lattice Tool Scripts

Lattice Semiconductor©

General Scripting Flow

Lattice Semiconductor©

Diamond Tool

Flow

Radiant & Diamond General Scripting Flow

Radiant Tool

Flow

SYNPWRAP

POSTSYN

MAP

PAR

BITGEN

SYNPWRAP

NGDBUILD

PAR

BITGEN

MAP

.VM

.UDB

.UDB

.UDB

.BIT

.NCD

.NCD

.BIT

prj_run Synthesis

-impl <impl name>

prj_run Map

-impl <impl name>

prj_run PAR

-impl <impl name>

prj_run Export

-impl <impl name>

EDIF2NGD

.EDI

.NGO

.NGD

SYNTHESIS

Lattice Semiconductor©

Synthesis & Post-Synthesis

Commands

Lattice Semiconductor©

▪ Method #1: LSE batch mode

▪ synthesis

▪ postsyn

▪ Method #2: Synplify Pro batch mode

▪ synpwrap

▪ postsyn

▪ Method #3: Project TCL mode

▪ prj_run Synthesis -impl <implementation name>

Synthesis & Post-Synthesis Commands (Radiant)

Lattice Semiconductor©

▪ Method #1: LSE batch mode

▪ Synthesis

▪ Method #2: Synplify Pro batch mode

▪ synpwrap

▪ edif2ngd

▪ Ngdbuild

▪ Method #3: Project TCL mode

▪ prj_run Synthesis -impl <implementation name>

▪ prj_run Translate -impl <implementation name>

▪ Synplify Pro only

Synthesis & Post-Synthesis Commands (Diamond)

Lattice Semiconductor©

▪ Method #1: batch mode

▪ map

▪ par

▪ bitgen

▪ Method #2: Project TCL mode

▪ prj_run Map -impl <implementation name>

▪ prj_run PAR -impl <implementation name>

▪ prj_run Export -impl <implementation name>

▪ -forceAll to rerun every stage before the selected one

▪ -forceOne to force rerun this stage only

Map, Place & Route, and Bitstream Generation Commands

Lattice Semiconductor©

Running TCL Scripts

Lattice Semiconductor©

▪ Methods for invoking TCL scripts vary slightly between each Lattice tool

▪ Lattice Tool Interactive TCL Console (Radiant, Diamond & Propel)

▪ source <TCL script location>

▪ Radiant

▪ Windows: <Radiant install path>/bin/nt64/pnmain.exe -t <TCL script location>

▪ Console mode: <Radiant install path>/bin/nt64/pnmainc.exe <TCL script location>

▪ Linux: <Radiant install path>/bin/lin64/radiant -t <TCL script location>

▪ Console mode: <Radiant install path>/bin/nt64/radiantc <TCL script location>

▪ Diamond

▪ Windows: <Diamond install path>/bin/nt64/pnmain.exe -t <TCL script location>

▪ Console mode: <Diamond install path>/bin/nt64/pnmainc <TCL script location>

▪ Linux: <Diamond install path>/bin/lin64/diamond -t <TCL script location>

▪ Console mode: <Diamond install path>/bin/lin64/diamondc <TCL script location>

▪ Propel Builder

▪ Windows: <Propel install path>/builder/rtf/bin/nt64/propelbld.exe <TCL script location> -gui

▪ Console mode: <Propel install path>/builder/rtf/bin/nt64/propelbld.exe <TCL script location>

▪ Linux: <Propel install path>/builder/rtf/bin/lin64/propelbldwrap <TCL script location> –gui

▪ Console mode: <Propel install path>/builder/rtf/bin/lin64/propelbldwrap <TCL script location>

Running TCL Scripts

Lattice Semiconductor©

Running Batch Scripts

Lattice Semiconductor©

▪ Setting up the command line for Radiant batch mode

▪ Set the PATH & FOUNDRY environment variables

▪ set PATH=<Radiant install path>/bin/nt64;<Radiant

install path>/ispfpga/bin/nt64

▪ set FOUNDRY=<Radiant install path>/ispfpga

▪ Begin using Lattice tool commands

▪ Setting up the command line for Diamond batch mode

▪ Set the PATH & FOUNDRY environment variables

▪ set PATH=<Diamond install path>/bin/nt64;<Radiant

install path>/ispfpga/bin/nt64

▪ set FOUNDRY=<Diamond install path>/ispfpga

▪ Begin using Lattice tool commands

Running Batch Scripts (Windows)

Lattice Semiconductor©

▪ Setting up the command line for Radiant batch mode

▪ Set the bindir environment variable

▪ export bindir=<Radiant install path>/bin/lin64

▪ Invoke Radiant environment setup script

▪ source $bindir/radiant_env

▪ Begin using Lattice tool commands

▪ Setting up the command line for Diamond batch mode

▪ Set the bindir environment variable

▪ export bindir=<Diamond install path>/bin/lin64

▪ Invoke Diamond environment setup script

▪ source $bindir/diamond_env

▪ Begin using Lattice tool commands

Running Batch Scripts (Linux)

Lattice Semiconductor©

Useful Reports for Creating

Scripts

Lattice Semiconductor©

▪ Radiant

▪ Last build log (batch mode commands)

▪ Contains console output from last time the

project was ran

▪ Useful to find how Radiant invokes each

specific process (synthesis, map, par, etc.)

▪ Use CTRL + F to easily parse through the file

▪ Radiant & Diamond

▪ TCL command log

▪ Tracks all TCL commands executed from

each build

▪ Useful to create a simple script to reproduce

GUI functionality

Useful Reports for Creating Scripts

Lattice Semiconductor©

Techniques & Tips -

Setting and Using Variables

Lattice Semiconductor©

▪ A useful feature of TCL is the ability to set variable names and values

▪ Very important for script readability and reusability

▪ Enables better customizability of scripts

▪ To set a variable in TCL, use the set command followed by the value of the variable

▪ E.g., “set project_directory /home/usr/jmerc/projects/hw_soc_lifcl”

▪ To reuse an existing variable after one has been set, simply call the variable by its name with a $

preceding it

▪ If multiple variables are called in the same line, use ${} syntax to avoid syntax errors

▪ E.g., “prj_project open ${project_directory}/${project_name}.rdf

▪ Without ${}, the TCL interpreter would look for a variable called project_directory$project_name.rdf and error out

▪ Using ${} tells the interpreter to elaborate both variables and treat the result as a single combined string

Setting and Using Variables

Lattice Semiconductor©

Techniques & Tips -

Creating and Managing a

List of Elements

Lattice Semiconductor©

▪ What is a list?

▪ A list is an array of elements which can be used for various different purposes

▪ Iterate through the list of elements

▪ Manage and use contents of list to determine script functionality

▪ Contents of a list can be any value type (e.g., integer, float, string, etc.)

▪ Creating a List of Elements

▪ set <list name> {item1 item2 …}

▪ set <list name> [list item1 item2 …]

Creating a List of Elements

Lattice Semiconductor©

▪ Once a list of elements has been created, there are a variety of ways which it can be interacted

with or used in a TCL scripted flow

▪ Methods for Managing and Using Lists:

▪ lsort <list name>

▪ Alphabetically sort list contents

▪ lappend <list name> <value> | append <list name> <value>

▪ Appends a value to the end of the specified list

▪ lindex <list name> <list index>

▪ Returns the value of a list at the specified index

▪ $<list name>(list index)

▪ E.g., $my_list(3)

▪ llength <list name>

▪ Returns the number of elements in the specified list

Managing a List of Elements (1/2)

Lattice Semiconductor©

▪ Methods for Managing and Using Lists:

▪ linsert <list name> <list index> <value>

▪ Insert a new element at the specified index of the list

▪ lset <list name> <list index> <value>

▪ Set the value of an element at the specified index of a list

▪ lreplace <list name> <first index> <last index> <value 1> <value 2> …

▪ Replace multiple list items from the specified index range

Managing a List of Elements (2/2)

Lattice Semiconductor©

Techniques & Tips -

Controlling Loops

Lattice Semiconductor©

▪ Similar to most other programming languages, TCL has a few types of loops which can be used to

automatically iterate through certain lists or integer ranges

▪ For Loop

▪ Executes a statement multiple times, updating the loop variable each time

▪ Syntax: for {<initialization>} {<condition>} {<increment>} { <statement> };

▪ E.g., “for {set i 0} {$i < 5} {incr i} { …”

▪ Foreach Loop

▪ Iterates through all the elements in one or more lists

▪ Syntax: foreach <variable> <list name or list contents> { <statement> };

▪ E.g., “foreach x $my_list { ...”

Controlling Loops (1/2)

Lattice Semiconductor©

▪ While

▪ Executes a statement indefinitely as long as its logical expression is true

▪ Syntax: while {<logical expression>} { <statement> };

▪ E.g., “while {$x<10} {…”

▪ E.g., “while {1} {…”

▪ Break

▪ Causes a break exception to occur when the command is encountered in order to exit a loop

▪ Syntax: break

▪ Continue

▪ Causes a continue exception which causes the current iteration of the loop to exit, and continue

on to the next iteration

▪ Syntax: continue

Controlling Loops (2/2)

Lattice Semiconductor©

Techniques & Tips -

Accessing Files

Lattice Semiconductor©

▪ Check the Existence of a File

▪ Boolean check to determine if a file or directory exists (returns 1 if True)

▪ Syntax: file exists <file name>

▪ Open an Existing File

▪ Opens the specified file with set access permissions and returns the name of the file

▪ Syntax: open <file name> [r | w | a]

▪ R = read only

▪ W = write only

▪ A = append only

▪ Close an Opened File

▪ Syntax: close <file name>

Accessing Files (1/2)

Lattice Semiconductor©

▪ Parse through an Opened File

▪ Syntax: read [-nonewline] <file name>

▪ Reads all remaining contents from the specified file when used after the open command

▪ (Optional) -nonewline removes all new line characters (\n) from the file when reading through it

▪ Syntax: gets <file name> [<variable name>]

▪ Reads the next line from the specified file

▪ Stores the value of the next line to a variable if one is set

▪ E.g., gets C:/projects/data.txt lines

▪ Check for the End of an Opened File

▪ Boolean check to determine whether the specified file has reached its end of file

▪ Syntax: eof <file name>

▪ Write to an Opened File

▪ Writes a string to the end of the specified file

▪ Syntax: puts [-nonewline] [file name] <string>

▪ -nonewline will omit the new line character (\n) when writing to the file

Accessing Files (2/2)

Lattice Semiconductor©

Techniques & Tips -

Calling External Program

Lattice Semiconductor©

▪ Aside from global and tool specific TCL commands, external programs can also directly be called

from a TCL script

▪ Useful to incorporate non-TCL commands into a TCL scripted flow

▪ Expands possibilities for what can be done in a TCL script

▪ Can also directly invoke other types of scripts

▪ To call an external program, use the exec command

▪ Exec functions the same between Windows & Linux and is reusable

▪ Main difference to keep in mind would be when OS specific commands are used

▪ E.g., “exec ls” (Linux) vs “exec cmd /c dir /B” (Windows) to return a list of files in the current directory

▪ Use the set command in combination with exec to store console output results from invoking a command

▪ E.g., “set results [exec C:/users/usr/programs/python/python.exe C:/projects/scripts/my_script.py]”

Calling External Programs

Lattice Semiconductor©

Techniques & Tips –

Error Handling

Lattice Semiconductor©

▪ Although Lattice tools do not have any built-in error handling TCL commands, TCL has a few

native commands which can be used to implement preventative error handling in your own

scripts

▪ Method #1: Catch Errors during Runtime

▪ Use the catch TCL command to handle errors which occur during a script's runtime

▪ Useful in avoiding errors that may occur and cause command abortion

▪ If an error is encountered the command will return a non-zero value corresponding to the

error code

▪ Syntax: catch <statements or script> <variable name>

▪ E.g., “catch {gets $my_file} read_error”

▪ Error code output from the TCL interpreter is stored in the “read_error” variable

Error Handling (1/2)

Lattice Semiconductor©

▪ Method #2: Preemptively Check the Validity of a Script’s Inputs

▪ If users know the configurable parts of a script that are key to its operation, then preemptive error

handling conditions can be set to prevent it from erroring out

▪ Revolves around the use of if else statements to provide conditions which ensure that the script

is used within its intended parameters

▪ Syntax: if {boolean expression #1} {

 statements

 } elseif {boolean expression #2} {

 statements

 } else {

 statements

 }

Error Handling (2/2)

	Slide 1: Introduction to Lattice Tool Scripting
	Slide 2: Introduction to Lattice Tool Scripting
	Slide 3: Creating Lattice Tool Scripts
	Slide 4: Radiant & Diamond Tool Scripting Overview
	Slide 5: Creating Lattice Tool Scripts
	Slide 6: General Scripting Flow
	Slide 7: Radiant & Diamond General Scripting Flow
	Slide 8: Synthesis & Post-Synthesis Commands
	Slide 9: Synthesis & Post-Synthesis Commands (Radiant)
	Slide 10: Synthesis & Post-Synthesis Commands (Diamond)
	Slide 11: Map, Place & Route, and Bitstream Generation Commands
	Slide 12: Running TCL Scripts
	Slide 13: Running TCL Scripts
	Slide 14: Running Batch Scripts
	Slide 15: Running Batch Scripts (Windows)
	Slide 16: Running Batch Scripts (Linux)
	Slide 17: Useful Reports for Creating Scripts
	Slide 18: Useful Reports for Creating Scripts
	Slide 19: Techniques & Tips - Setting and Using Variables
	Slide 20: Setting and Using Variables
	Slide 21: Techniques & Tips - Creating and Managing a List of Elements
	Slide 22: Creating a List of Elements
	Slide 23: Managing a List of Elements (1/2)
	Slide 24: Managing a List of Elements (2/2)
	Slide 25: Techniques & Tips - Controlling Loops
	Slide 26: Controlling Loops (1/2)
	Slide 27: Controlling Loops (2/2)
	Slide 28: Techniques & Tips - Accessing Files
	Slide 29: Accessing Files (1/2)
	Slide 30: Accessing Files (2/2)
	Slide 31: Techniques & Tips - Calling External Program
	Slide 32: Calling External Programs
	Slide 33: Techniques & Tips – Error Handling
	Slide 34: Error Handling (1/2)
	Slide 35: Error Handling (2/2)
	Slide 36

