Introduction to Lattice Tool
Scripting

Lattice Semiconductor© = ::: LATTI CE

HEE scMICONDUCTOR]

Introduction to Lattice Tool Scripting

= Why create scripts?

set project "/home/lattice/Desktop/xo2 proj/xe2 proj.ldf"

= |Implement new approaches to designing

0 g Prj project open Sproject
» |Improve productivity pri_run Export -impl impll

= Not as difficult as some might think
Reusability possible once you get going initially

= Work entirely from the command line

= What types of scripts are typically used within the Lattice tool flow?
= TCL (Tool Command Language)
TCL scripts are used to automate the FPGA design flow for Lattice’s main design tools
Diamond, Radiant, Propel Builder

Most actions in each tool’s GUI have corresponding TCL commands which can be used in a scripted flow
= Makefile

Makefile scripts are used to generate compiled code for embedded software projects (C/C++)
Lattice Propel™ SDK automatically generates the necessary build scripts to compile a C/C++ project

In the Lattice tool flow it is not required for users to create these own scripts

. If users desire to customize their build scripts, they should create a new file called makefile.targets
Lattice Semiconductor© l'.l.l. LATTICE

CCCCCCCCCCCCC

Creating Lattice Tool
Scripts

Lattice Semiconductor© = :.5.!. LATTI CE

CCCCCCCCCCCCC .

Radiant & Diamond Tool Scripting Overview

Radiant Scriptable Features Diamond Scriptable Features

= Synthesis, MAP, PAR = Synthesis, MAP, PAR

= Bitstream generation = Bitstream generation

= General project management (TCL) = General project management (TCL)
= Message promotion & demotion (TCL) = Reveal Analyzer (TCL)

= Reveal Analyzer & Controller (TCL) = Power Calculator (TCL)

= Power Calculator (TCL) ECO Editor (TCL)
= ECO Editor (TCL) = Device Programming
= Device Programming

Deployment Tool
= Deployment Tool
= |P Generation

Lattice Semiconductor© l'.l.l. LATTI CE

IIIIIIIIIIIIIIII

Creating Lattice Tool Scripts

= The two main methods for scripting the Lattice FPGA build flow are TCL and batch
= Depending on the type of script (TCL or batch), there are different commands that are used

= How each script is invoked in the Lattice tool design flow also depends on the type of script
This is the first thing that you should consider when creating your script

= For TCL based scripts, Radiant and Diamond both have an integrated TCL console
= TCL console is integrated at the GUI level, but there is also a console-only version as well

= |tis also possible to automatically invoke TCL scripts upon launching Radiant or Diamond’s TCL
consoles

= For batch mode scripts, there is additional setup required before Lattice tool commands
can be used at the command line level

= Depending on the operating system this setup varies slightly

Lattice Semiconductor© :’:'ILATTICE

[
B SEMICONDUCTOR

General Scripting Flow

Lattice Semiconductor© = :.5.!. LATTI CE

CCCCCCCCCCCCC .

Radiant & Diamond General Scripting Flow

Lattice Semiconductor©

Radiant Tool

Flow

SYNTHESIS SYNTHESIS

prj_run Ma
-impl <impl

prji_run PAR
-impl <impl name>

BITGEN
prj_run Export
-impl <impl name>

Diamond Tool

=z LATTICE

HEE scMICONDUCTOR]

Synthesis & Post-Synthesis
Commands

Lattice Semiconductor©

Synthesis & Post-Synthesis Commands (Radiant)

= Method #1: LSE batch mode
= synthesis
= postsyn

= Method #2: Synplify Pro batch mode
" synpwrap
" postsyn

= Method #3: Project TCL mode
= prj_run Synthesis -impl <implementation name>

Lattice Semiconductor© :’:'ILATTICE

[
B SEMICONDUCTOR

Synthesis & Post-Synthesis Commands (Diamond)

= Method #1: LSE batch mode
» Synthesis

= Method #2: Synplify Pro batch mode
= synpwrap
= edif2ngd
= Ngdbuild

= Method #3: Project TCL mode
= prj_run Synthesis -impl <implementation name>

* prj_run Translate -impl <implementation name>
- Synplify Pro only

Lattice Semiconductor© :’:'ILATTICE

[
B SEMICONDUCTOR

Map, Place & Route, and Bitstream Generation Commands

= Method #1: batch mode
" map
" par
= bitgen

= Method #2: Project TCL mode

= prj_run Map -impl <implementation name>
= prj_run PAR -impl <implementation name>

= prj_run Export -impl <implementation name>

#Funnan MR E

2-TO00HE -t TOQFP144
proj _impll.ngd™ °
"x02_proj impll.prf™ \

-z U

yitgen -£ "
-W "H02 proj I
yitgen —f "xod prod impll.tib

-W |"¥02_prol_impll.ncd"| -Jjedec "xoi_proj impll.prf™

-forceAll to rerun every stage before the selected one

-forceOne to force rerun this stage only

Lattice Semiconductor©

m: LATTICE

CCCCCCCCCCCCC

Running TCL Scripts

Lattice Semiconductor© -« :.5.!. LATTI CE

CCCCCCCCCCCCC .

Running TCL Scripts

= Methods for invoking TCL scripts vary slightly between each Lattice tool
= Lattice Tool Interactive TCL Console (Radiant, Diamond & Propel)
source <TCL script location>
= Radiant

Windows: <Radiant install path>/bin/nt64/pnmain.exe -t <TCL script location>
Console mode: <Radiant install path>/bin/nt64/pnmainc.exe <TCL script location>

Linux: <Radiant install path>/bin/lin64/radiant -t <TCL script location>
Console mode: <Radiant install path>/bin/nt64/radiantc <TCL script location>

= Diamond

Windows: <Diamond install path>/bin/nt64/pnmain.exe -t <TCL script location>
Console mode: <Diamond install path>/bin/nt64/pnmainc <TCL script location>

Linux: <Diamond install path>/bin/lin64/diamond -t <TCL script location>
Console mode: <Diamond install path>/bin/lin64/diamondc <TCL script location>

* Propel Builder

Windows: <Propel install path>/builder/rtf/bin/nt64/propelbld.exe <TCL script location> -gui
Console mode: <Propel install path>/builder/rtf/bin/nt64/propelbld.exe <TCL script location>

Linux: <Propel install path>/builder/rtf/bin/lin64/propelbldwrap <TCL script location> —gui
Console mode: <Propel install path>/builder/rtf/bin/lin64/propelbldwrap <TCL script location>

Lattice Semiconductor©

wax LATTICE

CCCCCCCCCCCCC

Running Batch Scripts

Lattice Semiconductor© = :.5.!. LATTI CE

CCCCCCCCCCCCC .

Running Batch Scripts (Windows)

= Setting up the command line for Radiant batch mode

= Set the PATH & FOUNDRY environment variables

set PATH=<Radiant install path>/bin/nt64;<Radiant
install path>/ispfpga/bin/nt64

set FOUNDRY=<Radiant install path>/ispfpga
= Begin using Lattice tool commands

= Setting up the command line for Diamond batch mode

= Set the PATH & FOUNDRY environment variables

set PATH=<Diamond install path>/bin/nt64;<Radiant
install path>/ispfpga/bin/nt64

set FOUNDRY=<Diamond install path>/ispfpga
= Begin using Lattice tool commands

Lattice Semiconductor©

prj clnx_project_impl_ 1 sw

nplify.tecl -log clnx project_impl_l.sef

wax LATTICE

CCCCCCCCCCCCC

Running Batch Scripts (Linux)

= Setting up the command line for Radiant batch mode

export bindir=/home/lattice/lscc/radiant/2023.1/bin/lingd

= Set the bindir environment variable acarce sbindiz/radient env
export proj_path=/home/lattice/Documents,/pr]j_demo
export bindir=<Radiant install path>/bin/lin64 4. spro3_parh :

ostsyn)-a LIFCL -p LIFCL-40 -t CABGR400 -sp 7_High-Performa

» Invoke Radiant environment setup script

ap -1 prj_test_syn.udbk -pdc impll.pdc -o prj_test map.udb -o

- source $bindir/radiant_env
= Begin using Lattice tool commands

export bindir=/usr/local/dlamond/ 5. 12/bin/lingd

= Setting up the command line for Diamond batch mode source $bindir/diamond env

= Set the bindir environment variable

- export bindir=<Diamond install path>/bin/lin64

» HelloWorld Top

= Invoke Diamond environment setup script ~ver "pz]_path/xe2 proj/xo2 prol_Top.v"

- source $bindir/diamond_env
= Begin using Lattice tool commands

Lattice Semiconductor© l'.l.l. LATTI CE

CCCCCCCCCCCCC

Useful Reports for Creating
Scripts

Lattice Semiconductor©

Useful Reports for Creating Scripts

= Radiant
= |Last build log (batch mode commands)

- Contains console output from last time the
project was ran

- Useful to find how Radiant invokes each -
specific process (synthesis, map, par, etc.) - e o

. Use CTRL + F to easily parse through the file

TCL Command Log

= Radiant & Diamond

= TCL command log

- Tracks all TCL commands executed from
each build

- Useful to create a simple script to reproduce
GUI functionality

Lattice Semiconductor©

wax LATTICE

CCCCCCCCCCCCC

Techniques & Tips -
Setting and Using Variables

. i

Lattice Semiconductor© ::: LATTI CE

IIIIIIIIIIIIIIII]

Setting and Using Variables

= A useful feature of TCL is the ability to set variable names and values
» Very important for script readability and reusability

= Enables better customizability of scripts

= To set a variable in TCL, use the set command followed by the value of the variable
= E.g., “set project_directory /home/usr/jmerc/projects/hw_soc_lifcl”

= To reuse an existing variable after one has been set, simply call the variable by its name with a $
preceding it

= |f multiple variables are called in the same line, use ${} syntax to avoid syntax errors

= E.g., “prj_project open ${project_directory}/${project_name}.rdf
Without ${}, the TCL interpreter would look for a variable called project_directory$project_name.rdf and error out
Using ${} tells the interpreter to elaborate both variables and treat the result as a single combined string

Lattice Semiconductor© l'.l.l. LATTI CE

HEE scMICONDUCTOR

Techniques & Tips -
Creating and Managing a
List of Elements -

. A

Lattice Semiconductor© ::: LATTI CE

IIIIIIIIIIIIIIII]

Creating a List of Elements

= What is a list?

= Alist is an array of elements which can be used for various different purposes

lterate through the list of elements
Manage and use contents of list to determine script functionality

= Contents of a list can be any value type (e.g., integer, float, string, etc.)

= Creating a List of Elements

= set <list name> {item1 item2 ...}

» set <list name> [list item1 item2 ...]

Lattice Semiconductor© :’:'ILATTICE

[
B SEMICONDUCTOR

Managing a List of Elements (1/2)

= Once a list of elements has been created, there are a variety of ways which it can be interacted
with or used in a TCL scripted flow

= Methods for Managing and Using Lists:

» |sort <list name>
Alphabetically sort list contents

* |lappend <list name> <value> | append <list name> <value>
Appends a value to the end of the specified list

* lindex <list name> <list index>

Returns the value of a list at the specified index
$<list name>(list index)
E.g., $my list(3)

» |length <list name>

Returns the number of elements in the specified list

Lattice Semiconductor© l'.l.l. LATTI CE

HEE scMICONDUCTOR

Managing a List of Elements (2/2)

= Methods for Managing and Using Lists:

» linsert <list name> <list index> <value>
Insert a new element at the specified index of the list
= |set <list name> <list index> <value>
Set the value of an element at the specified index of a list
» |replace <list name> <first index> <last index> <value 1> <value 2> ...

Replace multiple list items from the specified index range

Lattice Semiconductor© l'.l.l. LATTI CE

HEE scMICONDUCTOR

Techniques & Tips -
Controlling Loops

Lattice Semiconductor©

Controlling Loops (1/2)

= Similar to most other programming languages, TCL has a few types of loops which can be used to
automatically iterate through certain lists or integer ranges

= For Loop

= Executes a statement multiple times, updating the loop variable each time

= Syntax: for {<initialization>} {<condition>} {<increment>} { <statement> };
E.g., “for {seti 0} {$i < 5} {incri}{...”

foreach 1 SVFILE LIST {

if { [catch {prj add source i)} £id] } {

puts "file already exists in project.”

= Foreach Loop }

= [terates through all the elements in one or more lists

= Syntax: foreach <variable> <list name or list contents> { <statement> };
E.g., “foreach x $my list { ...”

Lattice Semiconductor© l'.l.l. LATTI CE

HEE scMICONDUCTOR

Controlling Loops (2/2)

= While
» Executes a statement indefinitely as long as its logical expression is true
= Syntax: while {<logical expression>} { <statement> };
E.g., “while {$x<10}{...”
E.g., “while {1} {...”
= Break
= Causes a break exception to occur when the command is encountered in order to exit a loop
= Syntax: break
= Continue

= Causes a continue exception which causes the current iteration of the loop to exit, and continue
on to the next iteration

= Syntax: continue

Lattice Semiconductor© :’:'ILATTICE

[
B SEMICONDUCTOR

Techniques & Tips -
Accessing Files

Lattice Semiconductor© :.5... LATTI CE

CCCCCCCCCCCCC .

Accessing Files (1/2)

= Check the Existence of a File

» Boolean check to determine if a file or directory exists (returns 1 if True)

= Syntax: file exists <file name>

= Open an Existing File

= Opens the specified file with set access permissions and returns the name of the file
= Syntax: open <file name> [r | w | a]

R = read only

W = write only

A = append only

= Close an Opened File

» Syntax: close <file name>

Lattice Semiconductor© l'.l.l. LATTI CE

HEE scMICONDUCTOR

Accessing Files (2/2)

= Parse through an Opened File

= Syntax: read [-nonewline] <file name>

Reads all remaining contents from the specified file when used after the open command
(Optional) -nonewline removes all new line characters (\n) from the file when reading through it

» Syntax: gets <file name> [<variable nhame>]

Reads the next line from the specified file
Stores the value of the next line to a variable if one is set
E.g., gets C:/projects/data.txt lines

Check for the End of an Opened File

= Boolean check to determine whether the specified file has reached its end of file

= Syntax: eof <file name>

= Write to an Opened File

= Writes a string to the end of the specified file
= Syntax: puts [-nonewline] [file name] <string>

-nonewline will omit the new line character (\n) when writing to the file

Lattice Semiconductor© l'.l.l. LATTI CE

Bl SEMICONDUCTOR

Techniques & Tips -
Calling External Program

Lattice Semiconductor©

Calling External Programs

= Aside from global and tool specific TCL commands, external programs can also directly be called
from a TCL script

» Useful to incorporate non-TCL commands into a TCL scripted flow
= Expands possibilities for what can be done in a TCL script
Can also directly invoke other types of scripts

= To call an external program, use the exec command
= Exec functions the same between Windows & Linux and is reusable

Main difference to keep in mind would be when OS specific commands are used
E.g., “exec Is” (Linux) vs “exec cmd /c dir /B” (Windows) to return a list of files in the current directory
» Use the set command in combination with exec to store console output results from invoking a command

E.g., “set results [exec C:/users/usr/programs/python/python.exe C:/projects/scripts/my_script.py]”

Lattice Semiconductor©

=z LATTICE

HEE scMICONDUCTOR

Techniques & Tips —
Error Handling

Lattice Semiconductor© :.5... LATTI CE

CCCCCCCCCCCCC .

Error Handling (1/2)

= Although Lattice tools do not have any built-in error handling TCL commands, TCL has a few
native commands which can be used to implement preventative error handling in your own
scripts

= Method #1: Catch Errors during Runtime

» Use the catch TCL command to handle errors which occur during a script's runtime
» Useful in avoiding errors that may occur and cause command abortion

= |f an error is encountered the command will return a non-zero value corresponding to the

error COde foreach i SVFILE LIST {
)) if [[catch T_prj_a:ﬁ:j_s.:n_n:-:e i)} £id] } {
» Syntax: catch <statements or script> <variable name> puts "file already exists in project.”
}
E.g., “catch {gets $my file} read_error” }

Error code output from the TCL interpreter is stored in the “read_error” variable

Lattice Semiconductor© l'.l.l. LATTI CE

HEE scMICONDUCTOR

Error Handling (2/2)

= Method #2: Preemptively Check the Validity of a Script’s Inputs

= |f users know the configurable parts of a script that are key to its operation, then preemptive error
handling conditions can be set to prevent it from erroring out

= Revolves around the use of if else statements to provide conditions which ensure that the script
Is used within its intended parameters

» Syntax: if {boolean expression #1} {
statements
} elseif {boolean expression #2} {
statements
} else {

statements

Lattice Semiconductor© i!!s&nﬁzrl-!ccrg

==LATTICE

B SsSEMICONDUCTOR

The Low Power Programmable Leader

	Slide 1: Introduction to Lattice Tool Scripting
	Slide 2: Introduction to Lattice Tool Scripting
	Slide 3: Creating Lattice Tool Scripts
	Slide 4: Radiant & Diamond Tool Scripting Overview
	Slide 5: Creating Lattice Tool Scripts
	Slide 6: General Scripting Flow
	Slide 7: Radiant & Diamond General Scripting Flow
	Slide 8: Synthesis & Post-Synthesis Commands
	Slide 9: Synthesis & Post-Synthesis Commands (Radiant)
	Slide 10: Synthesis & Post-Synthesis Commands (Diamond)
	Slide 11: Map, Place & Route, and Bitstream Generation Commands
	Slide 12: Running TCL Scripts
	Slide 13: Running TCL Scripts
	Slide 14: Running Batch Scripts
	Slide 15: Running Batch Scripts (Windows)
	Slide 16: Running Batch Scripts (Linux)
	Slide 17: Useful Reports for Creating Scripts
	Slide 18: Useful Reports for Creating Scripts
	Slide 19: Techniques & Tips - Setting and Using Variables
	Slide 20: Setting and Using Variables
	Slide 21: Techniques & Tips - Creating and Managing a List of Elements
	Slide 22: Creating a List of Elements
	Slide 23: Managing a List of Elements (1/2)
	Slide 24: Managing a List of Elements (2/2)
	Slide 25: Techniques & Tips - Controlling Loops
	Slide 26: Controlling Loops (1/2)
	Slide 27: Controlling Loops (2/2)
	Slide 28: Techniques & Tips - Accessing Files
	Slide 29: Accessing Files (1/2)
	Slide 30: Accessing Files (2/2)
	Slide 31: Techniques & Tips - Calling External Program
	Slide 32: Calling External Programs
	Slide 33: Techniques & Tips – Error Handling
	Slide 34: Error Handling (1/2)
	Slide 35: Error Handling (2/2)
	Slide 36

